SADLER MATHEMATICS METHODS UNIT 1

WORKED SOLUTIONS

Chapter 5 Quadratic functions

Exercise 5A

Question 1

Changing the value of *a* in $y = ax^2$ effects the concavity of the graph and the rate of increase/decrease of the function.

It transforms the basic parabola by stretching it in the *y*-direction by a factor of *a*.

When a < 0, our parabola becomes reflected in the *x*-axis or inverted.

The value of *a* effects the 'steepness' of the curve. For example the *y* values of each point on $y = 4x^2$ are four times the *y* values of each point of $y = x^2$.

Changing the value of q in $y = x^2 + q$ changes the location of the *y*-intercept to (0, q). A positive value of q translates the basic parabola vertically q units up and a negative value of q translates the basic parabola vertically q units down.

Changing the value of p in $y = (x - p)^2$ changes the location of the x-intercept to (0, p). A positive value of p translates the basic parabola horizontally p units right and a negative value of p translates the basic parabola horizontally p units left.

We would expect $y = (x-3)^2 + 4$ to have the same shape as $y = x^2$ (no stretching or change to the rate of change). As q = 4, we expect the parabola to be translated 4 units up. As p = 3, we expect the parabola to move 3 units right.

We would expect $y = 2(x+1)^2 - 4$ to be steeper than $y = x^2$, as it have been stretched by a factor of 2 vertically. As q = -4, we expect the parabola to be translated 4 units down. As p = -1, we expect the parabola to move 1 units left.

Exercise 5B

Question 1

A has been translated 1 unit 'up': $y = x^2 + 1$ B has been translation 2 units down: $y = x^2 - 2$ C has been translated 4 units down: $y = x^2 - 4$ D has been translated 3 units right and 1 unit up: $y = (x-3)^2 + 1$ E has been translated 3 units left and 4 units down: $y = (x+3)^2 - 4$ F has been translated 2 units right and 3 units down: $y = (x-2)^2 - 3$

Question 2

G is $y = x^2$ inverted or reflected in x-axis: $\therefore y = -x^2$ H is G translated 3 units up: $y = -x^2 + 3$ I is G translated 3 units right: $y = -(x-3)^2$ J is G translated 3 units left and one unit up: $y = -(x+3)^2 + 1$

Question 3

K is $y = 2x^2$ translated 2 units down: $y = 2x^2 - 2$ L is $y = 2x^2$ translated 3 units right: $y = 2(x-3)^2$ M is $y = 2x^2$ translated 2 units left: $y = 2(x+2)^2$ N is $y = 2x^2$ translated 3 units right and 2 units down: $y = 2(x-3)^2 - 2$

a

$$y = a(x-p)^2 + q$$

 $tp (-1,-4) \therefore p = 1, q = -4$
 $y = a(x-1)^2 - 4$
Using y-intercept
 $-1 = a(0-1)^2 - 4$
 $-1 = a - 4$
 $a = 3$
required equation : $y = 3(x-1)^2 - 4$

b

С

$$tp (3,8) \therefore p = 3, q = 8$$

 $y = a(x-3)^2 + 8$

 $y = a(x-p)^2 + q$

Using *y*-intercept

$$-10 = a(0-3)^{2} + 8$$

-10 = 9a + 8
-18 = 9a
a = -2

required equation : $y = -2(x-3)^2 + 8$

y =
$$a(x-p)^2 + q$$

tp (4,-3) ∴ p = 4, q = -3
y = $a(x-4)^2 - 3$

Using y-intercept $5 = a(0-4)^{2} - 3$ 5 = 16a - 3 8 = 16a $a = \frac{1}{2}$ required equation : $y = \frac{1}{2}(x-4)^{2} - 3$

© Cengage Learning Australia Pty Ltd 2018

d $y = a(x-p)^2 + q$ $tp (-2,10) \therefore p = -2, q = 10$ $y = a(x+2)^2 + 10$ Using y-intercept $8 = a(0+2)^2 + 10$ 8 = 4a + 10-2 = 4a

$$a = -\frac{1}{2}$$

required equation : $y = -\frac{1}{2}(x+2)^2 + 10$

Exercise 5C

Question 1

- **a** x = -1
- **b** tp (-1,-4) min
- **c** y-int (0,?) $y = (0+1)^2 - 4 = -3$ (0,-3)

Question 2

- **a** x = 3
- **b** tp (3,5) min
- **c** y-int (0,?) $y = (0-3)^2 + 5 = -3$ (0,14)

a x = 1

b tp (1,3) max

c y-int (0,?)
$$y = -2(0-1)^2 + 3 = 1$$

(0,1)

Question 4

- **a** y-int (0, ?)y = (0-3)(0-7) = 21(0,21)
- **b** x-int (?,0) y = (x-3)(x-7) = 0 $\therefore x = 3,7$ (3,0) and (7,0)
- **c** line of symmetry

$$x = \frac{3+7}{2} = 5$$

d tp (5,?) y = (5-3)(5-7) = -4(5,-4) min

- **a** y-int (0, ?)y = (0-3)(0+4) = -12(0,-12)
- **b** x-int (?,0) y = (x-3)(x+4) = 0 $\therefore x = -4,3$ (-4,0) and (3,0)
- **c** line of symmetry

$$x = \frac{-4+3}{2} = -0.5$$

d tp (-0.5,?)

$$y = (-0.5 - 3)(-0.5 + 4) = -12.25$$

(-0.5, -12.25) min

Question 6

a y-int
$$(0, ?)$$

 $y = (0+2)(0+4) = 8$
 $(0,8)$

b x-int (?,0)

$$y = (x+2)(x+4) = 0$$

 $\therefore x = -4, -2$
(-4,0) and (-2,0)

- **c** line of symmetry $x = \frac{-4 + (-2)}{2} = -3$
- d tp (-3,?) y = (-3+2)(-3+4) = -1(-3,-1) min

a
$$x = -\frac{b}{2a}$$
$$= -\frac{4}{2}$$
$$= -2$$

b
$$tp (-2, ?)$$

 $y = (-2)^2 + 4(-2) - 12 = -16$
 $\therefore (-2, -16) \text{ min}$

c y-int (0,?) $y = 0^2 + 4(0) - 12 = -12$ ∴ (0,-12)

Question 8

a $x = -\frac{b}{2a}$ $= \frac{6}{2}$ = 3

b

tp (3,?)

$$y = (3)^2 - 6(3) + 1 = -8$$

∴ (3,-8) min

c y-int (0,?)

$$y = 0^2 - 6(0) + 1 = 1$$

 \therefore (0,1)

$$a \qquad x = -\frac{b}{2a}$$
$$= \frac{-4}{2(-2)}$$
$$= 1$$

b

tp (1,?)

$$y = -2(1)^2 + 4(1) + 1 = 3$$

∴ (1,3) max

c y-int (0,?)

$$y = -2(0)^2 + 4(0) + 1 = 1$$

∴ (0,1)

Question 10

a
$$x = -\frac{b}{2a}$$
$$= \frac{-8}{2(-2)}$$
$$= 2$$

b
$$tp (2,?)$$

 $y = 8(2)^2 - 2(2) - 3 = 5$
 $\therefore (2,5) \max$

c y-int (0,?)

$$y = 8(0)^2 - 2(0) - 3 = -3$$

∴ (0,-3)

a There is 14m of fencing available to form the two unknown sides,

x and y.

b
$$x + y = 14$$
 (from part **a**)
 $y = 14 - x$
 $A = l \times w$
 $= x \times y$

$$= x \times (14 - x)$$

- **c** See graph
- **d** Maximum area occurs at turning point.

Greatest area is 49 m² when x = y = 7 m

Question 12

a We have three unknown sides to create from 20 m fencing i.e.

$$x + y + x = 20$$

$$2x + y = 20 \Longrightarrow y = 20 - 2x$$

$$A = l \times w$$

$$= x \times (20 - 2x)$$

$$= 20x - 2x^{2}$$

- **b** See graph
- **c** Greatest area of 50 m^2 when x = 5 m and = 20 2(5) = 10 m

- **a** A is the turning point of the curve: (2.5, 11.25)
- **b** *h* is the *y*-intercept

$$h = -0.2(0 - 2.5)^2 + 11.25$$
$$= 10$$

c The graph is concave down.

Question 14

a
$$P = 0.6(0)^2 - 12(0) + 590$$

= 590

The average house price is \$590 000.

b $P = 0.6(15)^2 - 12(15) + 590$ = 545

The average house price is \$545 000.

c When buying a house, you want the purchase price

to be a minimum.

Using classpad, the turning point of the Price equation is (10, 530)

indicating the lowest price would be \$530 000 after 10 months.

Graph will have a maximum turning point due to negative co-efficient of t^2

Co-ordinates of turning point are (5, 122.5)

Maximum height of 122.5 m achieved when t = 5 seconds

Question 16

- **a** Section AB is concave up.
- **b** C is the turning point of $y = \frac{3}{160}(x-40)^2 + 15$

Coordinates of turning point (40, 15) so the bridge is 15 m above the water level

- **c** Line of symmetry passes through turning point, x = 40
- **d** D is on the y-axis, x = 0 \therefore DC = 40 m
- **e** $DE = 2 \times 40 = 80$ m due to symmetry
- **f** A is the *y*-intercept, x = 0.

$$A = \frac{3}{160}(0 - 40)^2 + 15 = 45 \text{ m}$$

As D is 15 m above the water level, DA = 30 m.

- **a** Both arches are concave down.
- **b** The midpoint is halfway between the *x*-intercepts of supporting arch or the *x* co-ordinate of turning point. Using classpad, x = 150 m.
- **c** One quarter along the bridge is 75 m.

Length of vertical strut required is the difference in *y*-values of the two arches when x = 75.

Road arch : $y = -\frac{75^2}{2250} + \frac{2 \times 75}{15} + 40 = 47.5$ Supporting arch : $y = \frac{2 \times 75}{3} - \frac{75^2}{450} = 37.5$ 47.5 m - 37.5 m = 10 m ∴ strut is 10 m in length

d The *x*-axis is 4 m higher than the low tide and 4 m lower than high tide.Coordinates of turning point, by classpad, (150, 50).

Bridge is 50 m above mean water level at its highest point and therefore

- i at low tide, it is 54 m clear of the water
- ii at high tide it is 46 m clear of the water

Exercise 5D

Question 1

x	0		1		2		3		4		5	
у	5		12		21		32		45		60	
		7		9		11		13		15		
			2		2		2		2			

Relationship is quadratic with a constant second difference of 2, $\Rightarrow a = 1$

When x = 0, $y = 5 \Longrightarrow c = 5$

We have $y = x^{2} + bx + 5$ When x = 1, y = 1212 = 1 + b + 5b = 6

The required equation is $y = x^2 + 6x + 5$.

Question 2

x	0		1		2		3		4		5	
У	0		1		8		27		64		125	
		1		7		19		37		61		
			6		12		18		24			

Reader should identify cubic numbers by inspection but first and second differences are not constant therefore the relationship is not linear or quadratic

x	0		1		2		3		4		5	
у	3		5		9		15		23		33	
		2		4		6		8		10		
			2		2		2		2			

Relationship is quadratic with a constant second difference of 2, $\Rightarrow a = 1$

When x = 0, $y = 3 \Longrightarrow c = 3$

We have $y = x^{2} + bx + 3$ When x = 1, y = 55 = 1 + b + 3b = 1

The required equation is $y = x^2 + x + 3$.

Question 4

x	0		1		2		3		4		5	
у	1		6		11		16		21		26	
		5		5		5		5		5		

A constant first difference indicates the relationship is linear.

A difference of 5 indicates the gradient is 5.

We have y = 5x + cWhen x = 0, $y = 1 \Longrightarrow c = 1$ The required equation is y = 5x + 1.

x	0		1		2		3		4		5	
у	2		3		6		11		18		27	
		1		3		5		7		9		
			2		2		2		2			

Relationship is quadratic with a constant second difference of 2, $\Rightarrow a = 1$

When x = 0, $y = 2 \Longrightarrow c = 2$

We have $y = x^{2} + bx + 2$ When x = 1, y = 33 = 1 + b + 2b = 0

The required equation is $y = x^2 + 2$.

Question 6

x	0		1		2		3		4		5	
у	π		2π		3π		4π		5π		6π	
		π		π		π		π		π		

A constant first difference indicates the relationship is linear.

A difference of π indicates the gradient is π .

We have $y = \pi x + c$ When x = 0, $y = \pi \Longrightarrow c = \pi$ The required equation is $y = \pi x + \pi$.

x	0		1		2		3		4		5	
у	3		6		12		24		48		96	
		3		6		12		24		48		
			3		6		12		24			

Reader should identify numbers are doubling (indicating an exponential relationship) by inspection but first and second differences are not constant therefore the relationship is not linear or quadratic

Question 8

x	0		1		2		3		4		5	
у	4		10		18		28		40		54	
		6		8		10		12		14		
			2		2		2		2			-

Relationship is quadratic with a constant second difference of 2, $\Rightarrow a = 1$

When x = 0, $y = 4 \Longrightarrow c = 4$

We have $y = x^{2} + bx + 4$ When x = 1, y = 1010 = 1 + b + 4b = 5

The required equation is $y = x^2 + 5x + 4$.

x	0		1		2		3		4		5	
У	3		11		19		27		35		43	
		8		8		8		8		8		

A constant first difference indicates the relationship is linear.

A difference of 8 indicates the gradient is 8.

We have y = 8x + cWhen x = 0, $y = 3 \Longrightarrow c = 3$ The required equation is y = 8x + 3.

Question 10

x	0		1		2		3		4		5	
у	3		5		11		21		35		53	
		2		6		10		14		18		
			4		4		4		4			

Relationship is quadratic with a constant second difference of 4, $\Rightarrow a = 2$

When x = 0, $y = 3 \Longrightarrow c = 3$

We have $y = 2x^{2} + bx + 3$ When x = 1, y = 55 = 2(1) + b + 3b = 0

The required equation is $y = 2x^2 + 3$.

x	0		1		2		3		4		5	
у	13		4		1		4		13		28	
		-9		-3		3		9		15		
			6		6		6		6			-

Relationship is quadratic with a constant second difference of 6, $\Rightarrow a = 3$

When x = 0, $y = 13 \Longrightarrow c = 13$

We have $y = 3x^{2} + bx + 13$ When x = 1, y = 44 = 3(1) + b + 13b = -12

The required equation is $y = 3x^2 - 12x + 13$.

x	-2		0		2		4		6		8	
у	-20		-4		4		4		-4		-20	
		16		8		0		-8		-16		
			-8		-8		-8		-8			

Relationship is quadratic with a constant second difference of -8, however the spacing of the *x* values means we cannot directly determine the value of *a*

When x = 0, $y = -4 \Longrightarrow c = -4$

We have
$$y = ax^{2} + bx - 4$$

When $x = 2$, $y = 4$
 $4 = a(2)^{2} + 2b - 4$
 $8 = 4a + 2b \implies 2b = 8 - 4a$
When $x = 4$, $y = 4$
 $4 = a(4)^{2} + 42b - 4$
 $8 = 16a + 4b$

Solving simultaneously,

8 = 16a + 2(8 - 4a) 8 = 8a + 16 a = -1b = 6

The required equation is $y = -x^2 + 6x - 4$.

а

L	1		2		3		4		5		6	
n	6		24		54		96		150		216	
		18		30		42		54		66		
			12		12		12		12			

b Relationship is quadratic with a constant second difference of 124, $\Rightarrow a = 6$

c $n = 6L^2$

Question 14

а

r	1		2		3		4		5		6	
n	1		3		6		10		15		21	
		2		3		4		5		6		
			1		1		1		1			

- **b** Relationship is quadratic with a constant second difference of 2, $\Rightarrow a = 0.5$
- **c** By extending the table, we find when $r = 0, n = 0 \Rightarrow c = 0$

We have $n = 0.5r^2 + br$ When r = 1, n = 1 1 = 0.5 + b b = 0.5The required equation is $n = 0.5r^2 + 0.5r$ = 0.5r(r+1)

Exercise 5E

Question 1

 $y = (x+2)^2 - 4 - 1$ $= (x+2)^2 - 5$

Minimum turning point at (-2, -5).

Question 2

 $y = (x-3)^2 - 9 + 2$ $= (x-3)^2 - 7$

Minimum turning point at (3, -7).

Question 3

 $y = (x-4)^2 - 16 + 10$ $= (x-4)^2 - 6$

Minimum turning point at (4, -6).

Question 4

 $y = (x+3)^2 - 9 + 3$ $= (x+3)^2 - 6$

Minimum turning point at (-3, -6).

Question 5

 $y = (x-1.5)^2 - 2.25 + 2$ $= (x-1.5)^2 - 0.25$

Minimum turning point at (1.5, -0.25).

© Cengage Learning Australia Pty Ltd 2018

$$y = (x - 2.5)^2 - 6.25 + 3$$
$$= (x - 2.5)^2 - 3.25$$

Minimum turning point at (2.5, -3.25).

Question 7

$$y = -(x^{2} - 10x + 1)$$

= -[(x-5)^{2} - 25 + 1]
= -[(x-5)^{2} - 24]
= -(x-5)^{2} + 24

Maximum turning point at (5,24).

Question 8

$$y = 2(x^{2} - 6x + 1.5)$$

= 2[(x-3)^{2} - 9 + 1.5]
= 2[(x-3)^{2} - 7.5]
= 2(x-3)^{2} - 15

Minimum turning point at (3, -15).

Question 9

$$y = -2(x^{2} - 4x - 2)$$

= -2[(x-2)^{2} - 4 - 2]
= -2[(x-2)^{2} - 6]
= -2(x-2)^{2} + 12

Maximum turning point at (2,12).

$$y = 2(x^{2} + 2.5x + 2)$$

= 2[(x+1.25)² -1.5625 + 2]
= 2[(x+1.25)² + 0.4375]
= 2(x+1.25)² + 0.875

Minimum turning point at (-1.25,0.875).

a f(6) = 5(6) + 1 = 31b $g(2) = 2^2 - 3 = 1$ f(2) + g(6)c $= 5(2) + 1 + 6^2 - 3$ = 44

Question 2

- **a** concave down
- **b** concave up
- **c** concave down

Question 3

$$y = 2x - 5$$

A $a = 2(5) - 3 = 1$
B $b = 2(2) - 5 = -1$
C $c = 2(-4) - 5 = -13$
D $d = 2(2.5) - 5 = 0$
E $13 = 2e - 5$
 $18 = 2e$
 $e = 9$
F $-5 = 2f - 5$
 $0 = 2f$
 $f = 0$

a $2 \times m = -1 \Rightarrow m = -\frac{1}{2}$ b y = 3x - 4 has m = 3 $3 \times m = -1 \Rightarrow m = -\frac{1}{3}$ c y = -0.2x + 1 has m = -0.2 $-0.2 \times m = -1 \Rightarrow m = 5$ d y = -0.5x + 1 has m = -0.5 $-0.5 \times m = -1 \Rightarrow m = 2$ y = 2x + c 13 = 2(3) + c c = 7required equation : y = 2x + 7

Question 5

- a y-intercept, x = 0y = (0-1)(0-3) = 3 $\therefore (0, 3)$
- **b** x-intercepts, y = 0 0 = (x-1)(x-3) x = 1, 3 $\therefore (1, 0) \text{ and } (3, 0)$
- **c** line of symmetry

$$x = \frac{1+3}{2} = 2$$

$$\therefore x = 2$$

d turning point (2, ?) y = (2-1)(2-3) = -1∴ minimum tp (2, -1)

Equation	y-axis intercept	Line of symmetry	Turning pointcoordinates	Max or Min
$y = x^2 + 4x + 1$	(0,1)	$x = -\frac{4}{2} = -2$	$y = (-2)^2 + 4(-2) + 1 = -3$ ∴ (-2,-3)	minimum
$y = x^2 - 2x - 1$	(0,-1)	$x = -\frac{(-2)}{2} = 1$	y = (1) ² - 2(1) - 1 = -2 ∴ (1, -2)	minimum
$y = 2x^2 + 4x - 3$	(0,-3)	$x = -\frac{4}{4} = -1$	y = 2(-1) ² + 4(-1) - 3 = -5 ∴ (-1, -5)	minimum
$y = 2x^2 + 6x - 1$	(0,-1)	$x = -\frac{6}{4} = -1.5$	$y = 2(-1.5)^2 + 6(-1.5) - 1 = -5.5$ $\therefore (-1.5, -5.5)$	minimum

Question 7

- **a** line of symmetry : x = -3
- **b** turning point (-3, -4)
- **c** A move of two units right moves the line of symmetry two units right : x = -1
- **d** The turning point is affected by both moves: (-1, -1)

А	x = 4		
В	y = -3		
С	y - int(0, 0)	m = 1	y = x
D	y-int (0,2)	m = 1	y = x + 2
E	y-int (0,4)	m = 2	y = 2x + 4
F	y - int(0,0)	m = -1	y = -x
G	y-int(0,4)	$m = \frac{1}{4}$	y = 0.25x + 4
Η	y-int (0,1)	$m = \frac{1}{2}$	y = 0.5x + 1
Ι	y-int (0,-1)	$m = -\frac{1}{2}$	y = -0.5x - 1

Question 9

Curve I: minimum turning point and *x*-intercepts of (1,0) and $(3,0) \Rightarrow y = (x-1)(x-3)$ Curve II: maximum turning point and *x*-intercepts of (-2,0) and $(2,0) \Rightarrow y = -(x-2)(x+2)$ Curve III: maximum turning point and *x*-intercepts of (-3,0) and $(-1,0) \Rightarrow y = -(x+1)(x+3)$ Curve IV: minimum turning point and *x*-intercepts of (-3,0) and $(-1,0) \Rightarrow y = (x+1)(x+3)$

x	1	2	3	4	5	6	7	8
у	7	10	13	16	19	22	25	28

A constant first difference of 3 means the relationship is of the form y = 3x + cUsing (5,19) from the table,

 $19 = 3(5) + c \Longrightarrow c = 4$

 \therefore required rule is y = 3x + 4.

b

а

x	c	1	2	3	4	5	6	7	8
у	,	1	3	5	7	9	11	13	15

A constant first difference of 2 means the relationship is of the form y = 2x + c

Using (7,13) from the table,

 $13 = 2(7) + c \Longrightarrow c = -1$

 \therefore required rule is y = 2x - 1.

С

x	1	2	3	4	5	6	7	8
у	15	13	11	9	7	5	3	1

A constant first difference decreasing by 2 means the relationship is of the form y = -2x + c

Using (3,11) from the table,

 $11 = -2(3) + c \Longrightarrow c = 17$

 \therefore required rule is y = -2x + 17.

x	1	2	3	4	5	6	7	8
у	4	9	14	19	24	19	32	39

$$\frac{19-9}{2} = 5$$

A constant first difference of 5 means the relationship is of the form y = 5x + c

Using (2,9) from the table,

 $9 = 5(2) + c \Longrightarrow c = -1$

 \therefore required rule is y = 5x - 1.

е	2

d

X	1	2	3	4	5	6	7	8
У	1				13			

 $\frac{13-1}{5-1} = \frac{12}{4} = 3$

A constant first difference of 3 means the relationship is of the form y = 3x + c

Using (5,13) from the table,

 $13 = 3(5) + c \implies c = -2$ ∴ required rule is y = 3x - 2.

Question 11

 $y = 3(x-2)^{2} + c$ Using (0,15), $15 = 3(0-2)^{2} + c \Rightarrow c = 3$ ∴ required equation is $y = 3(x-2)^{2} + 3$.

a The road width would be the distance between the *x*-intercepts.

x-intercepts, y = 0

$$0 = \frac{5x}{16}(8-x)$$
$$x = 0,8$$

The road is 8m wide.

b The clearance at the centre is the height of the turning point.

By classpad, turning point is (4, 5).

The clearance at the centre is 5 m.

c
$$4-2.3=1.7$$

 $y = \frac{5(1.7)(8-1.7)}{2} = 3.346875$

16 \therefore the truck can be a maximum height of 3.34 m.

d
$$4 - \frac{2.3}{2} = 2.85$$

 $y = \frac{5(2.85)(8 - 2.85)}{16} = 4.58671875$

 \therefore the truck can be a maximum height of 4.58 m.

a Area of triangular pieces I and II :

 $0.5 \times 15 \times 40 = 300 \, \text{cm}^2$

By symmetry, piece III has the same area as I and II combined

 $600 \, \text{cm}^2$

 $CE^2 = 40^2 + 15^2$ CE = 42.7 cm

We know the area of piece III and using the area of a triangle rule we can find $\angle CEA$.

$$600 = 0.5 \times 42.7^2 \times \sin \angle CEA$$

 $\angle CEA = 0.72$
Area of piece IV

 $0.5 \times 42.72^2 (0.72 - \sin(0.72)) = 55 \,\mathrm{cm}^2$

(Other methods may produce slightly different answers)

b The only length not known or previous calculated is the arc AB.

 $AB = 42.7 \times 0.72$ = 30.0 cm

Total length of lead :

 $(40+30+42.7) \times 2 + 30.2 = 255.6 \text{ cm}$ 256 cm of lead required